Multitasking

Multitasking: Switching costs

Subtle "switching" costs cut efficiency, raise risk.

What the research shows

Doing more than one task at a time, especially more than one complex task, takes a toll on productivity. Although that shouldn't surprise anyone who has talked on the phone while checking E-mail or talked on a cell phone while driving, the extent of the problem might come as a shock. Psychologists who study what happens to cognition (mental processes) when people try to perform more than one task at a time have found that the mind and brain were not designed for heavy-duty multitasking. Psychologists tend to liken the job to choreography or air-traffic control, noting that in these operations, as in others, mental overload can result in catastrophe.
Multitasking can take place when someone tries to perform two tasks simultaneously, switch . from one task to another, or perform two or more tasks in rapid succession. To determine the costs of this kind of mental "juggling," psychologists conduct task-switching experiments. By comparing how long it takes for people to get everything done, the psychologists can measure the cost in time for switching tasks. They also assess how different aspects of the tasks, such as complexity or familiarity, affect any extra time cost of switching.
In the mid-1990s, Robert Rogers, PhD, and Stephen Monsell, D.Phil, found that even when people had to switch completely predictably between two tasks every two or four trials, they were still slower on task-switch than on task-repeat trials. Moreover, increasing the time available between trials for preparation reduced but did not eliminate the cost of switching. There thus appear to be two parts to the switch cost -- one attributable to the time taken to adjust the mental control settings (which can be done in advance it there is time), and another part due to competition due to carry-over of the control settings from the previous trial (apparently immune to preparation).
Surprisingly, it can be harder to switch to the more habitual of two tasks afforded by a stimulus. For example, Renata Meuter, PhD, and Alan Allport, PhD, reported in 1999 that if people had to name digits in their first or second language, depending on the color of the background, as one might expect they named digits in their second language slower than in their first when the language repeated. But they were slower in their first language when the language changed.
In experiments published in 2001, Joshua Rubinstein, PhD, Jeffrey Evans, PhD, and David Meyer, PhD, conducted four experiments in which young adults switched between different tasks, such as solving math problems or classifying geometric objects. For all tasks, the participants lost time when they had to switch from one task to another. As tasks got more complex, participants lost more time. As a result, people took significantly longer to switch between more complex tasks. Time costs were also greater when the participants switched to tasks that were relatively unfamiliar. They got up to speed faster when they switched to tasks they knew better.
In a 2003 paper, Nick Yeung, Ph.D, and Monsell quantitatively modeled the complex and sometimes surprising experimental interactions between relative task dominance and task switching. The results revealed just some of the complexities involved in understanding the cognitive load imposed by real-life multi-tasking, when in addition to reconfiguring control settings for a new task, there is often the need to remember where you got to in the task to which you are returning and to decide which task to change to, when.

Comments